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S U M M A R Y  
Instabilhy theorems are derived for a class of feedback systems, having a time varying or nonlinear feedback gain, in 
an otherwise linear system. The obtained criteria are related to well known stability counterparts, and a geometrical 
interpretation of the results is found in the complex plane. 

1. Introduction 

Instability theorems for time varying and nonlinear feedback systems have been reported [1], 
that provide counterparts of well known stability criteria, such as the circle criteria [2] and 
Pop ov's stability theorem [3]. These results are all stated in terms of a geometrical condition, 
imposed in the complex plane, upon the frequency response H(jco) of the linear part of the 
system. In this paper a set of criteria is derived, that prove instability upon satisfaction of a 
similar geometrical condition, however imposed upon H(jco + r), where r is a real parameter. 
For r = 0, these theorems become identical to the known results. But many times, substantial 
improvements are obtained by choosing r different from zero. Furthermore, an optimal choice 
of r can often be determined on purely geometrical considerations in the complex plane. 
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Fig. 1. The class of systems under investigation. 
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The block diagram of the system under investigation is shown in fig. 1. We shall assume that 
the transfer function H (s) is a rational function: 

H(s) - q(s) (1) 
p( s )  ' 

where the polynomials q(s) and p(s) have no common factors, and degree q(s) < degree p(s). The 
operator N represents a time varying and/or nonlinear gain:Ny=k( t ,  y)'y, or Ny=f(y ) .  
We shall first deal with the case of time varying systems. 

2. Time Varying Systems 

If we let y=q(D)z, the system equation, of order n, takes the form" 

d 
p(D)z+N(q(D)z) = 0 D = dt (2) 
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or, for a time varying gain: 

p(D) z + k(t, y) q (D) z = 0 .  (3) 

In vector representation, (3) can be written as'  

2 = a x - k ( t ,  y)bc'x (4) 

if the matrix A and the vectors b and c are chosen such that [4]" 

c' (sI - A)-I  h = H (s). (5) 

Let us consider the system (4), and let us try to prove that the equilibrium state at the origin is 
unstable. We shall proceed as follows: 

Assume that, in state space, a closed, nonempty region Uv(x) can be found, such that" 
(i) Uv (x) does not contain the origin x = 0. 
(ii) If Xoe Uv(x), then x(t, Xo, to)e Uv(x) for all t>  to. x(t, Xo, to) is the solution of (4) with 

initial conditions x = Xo at t = to. Then it is clear that the origin is unstable, in the sense that 
the trajectory x(t, Xo, to) remains outside a bounded neighbourhood of the origin, for all 
t > to. Next assume that, in addition to these conditions, a scalar function V (x) can be found, 
having the property that Ix[ ~oo  if ]V(x)]-~oo, and such that: 

(iii) either 12 (x) > e > 0 for all x ~ Uv (x), or 12(x) < - e  < 0 for all x ~ Uv (x) (6) 

Then the origin is unstable in the sense that ]x(t, Xo, eo)] ~ oo as t ~  + oo. Uv(x) will be defined 
as : Uv(x) = (x ; V(x) < - P < 0)*, where V(x) = x' Vx; V '= V, is a quadratic form in the system's 
state variables, that must be neither positive definite, nor positive semidefinite, since Uv(x) 
must be nonempty. In order to satisfy (ii), we shall require that a scalar r > 0 can be found, 
such that along the solutions of (4) : 

(Z(x)-ZrV(x)  < 0 for all x (V) 

(7) implies that, if V (x)= - P ,  then l ) (x)< - 2 r P  < O, which means that, at the boundary of 
Uv(x), the vector field points to the inside of Uv(x ). Hence no trajectory, starting inside 
Uv (x) at t = to, can leave Uv (x) as time increases. Finally, if r > 0, we have l? (x) < - 2rP < 0 
for x ~ Uv (x) such that (iii) is also satisfied. 

Now let us find l/ ( x ) -  2rV (x). Using (4) we have'  

(Z(x)-- x' V ( a x - k ( t ,  y )bc ' x )+(x 'A ' - k ( t ,  y)b' c'x) Vx 

--- x ' (VA + A ' V ) x -  2k(t, y)(Vh)' xc' x 

l? (x) - 2r V (x) = x' (VA + A' V) x -  2k (t, y)(Vb)' xc' x -  x' (V" rI + rI" V) x 

= x' (V (A - rI)+ (A - rI)' V)x - 2k (t, y)(Vb)' xc'x 

Hence ( / ( x ) -2rV(x )  equals the derivative of V(x) along the solutions of the equation 

= A , x - k ( t ,  y)bc'x Ar =- a - r Z  (S) 

(8) is equivalent with: 

p(D+r)z+k( t ,  y )q(D+r)z  = 0 (9) 

So the instability of the origin is established if a quadratic form x' Vx can be found, that is 
neither positive definite, nor positive semidefinite, and whose derivative along the solutions 
of(8) is smaller than or equal to zero. Conditions under which such a quadratic form exists are 
derived in Appendix 1, yielding the following 

Circle Theorem 1. 

Assume that 
* read: Uv(x ) is the set of all points x, such that V(x)< -P.  
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(1) the open loop system, with transfer function H(s), is stable. 
(2) the feedback gain k(t, y) satisfies a limitation of the form 

0_< k(t, y)__< p, 

where ~ and fi are scalar constants. 
(3) a scalar r>__ 0 can be found, such that the plot H(]co+r) (-oo_<co __+oe) does not 

intersect the open disk F(a, fl), drawn on the segment ( -  1/c~, - 1/fl)* and encircles it at least 
once in the clockwise direction. 

Then the closed loop system is: 
1. if r--0 
unstable in the sense that there exists a set of initial states Xo, such that 

Ix(t, Xo, to)[ >t/(x0) > 0  for all t > to. 

2. if r > 0  
unstable in the sense that there exists a set of initial states Xo, such that 

]x(t, Xo, to)l~oQ as t ~ + ~ .  

Since x0 can be chosen arbitrarily close to the origin (by choosing [PI sufficiently small) the 
theorem implies that the origin is 
- -no t  asymptotically stable in the sense of Liapunov if r = 0 
- -no t  stable in the sense of Liapunov if r r O. 

3. Example 

As an example, consider the system shown in fig. 2, with open loop transfer function 

( s - a )  2 
H(s) - (s+b)3 a, b > 0 .  

For a linear, constant gain k, Nyquist's theorem predicts closed loop instability if e i ther  

k>k~ 
o r  

k<  max(ko, k2) 

___b 3. k s _  1 {_d+(dZ+64ab3)~} d ,  =aZ+6ab-3b2. 
with k~ = a 2 '  k2 4a 

Now let us find bounds k'~ and k~, such that for a time varying gain k(t, y), instability is guaran- 
teed if k (t, y) _-> k'l or k (t, y)___< k~. 

In fig. 2 the shape of H(jo3+r) (0< co< + ~ )  is drawn for different values of r. One sees 
readily that if k (t, y) > 0, it is useless to take r r 0. The best result is obtained with r = 0. The 
instability of the origin is proved for k (t, y) => k'~ if H (]co) ( -  ~ _< co < + ~ )  does not intersect 
the open disk F 1 (k], + ~) .  A side calculation shows that this condition is satisfied if 

b3+3baZ+6ab2-2a2k'~<-<_2[(3b+2a+k'l)(b3a2+a4k'l)] ~ ; k'l >kl.  

Now let us turn to the case k (t, y) < 0. It is easy to see that theorem 1 remains valid if 0 > fl > 
< , k (t, y) > c~. Hence, if we first let r = 0, the closed loop system is unstable for k (t, y) = k 2 < 0, if 

H(jco) does not intersect the disk F2(k'2, -oo). After some calculations one finds that this 
condition is satisfied if the following relations hold: 

b 3 
k2< ~ and k'2<-(3b+2a). (10) 

* F (a, fi) is centered at the point - �89 ((i/e) + 1/fi) and has the radius �89 - 1/fl). H (#o + r) may have points in common 
with the boundary of F(e, fl), but it must encircle the point - 1/e. 
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Fig. 2. Example 1: Root locus and frequency response of H(]o)). Shape of H(]o)+r). 

nr loa )  -'_ 

Now let us choose r ~ 0. In fig. 2 one sees that the optimal choice o f t  equals r = a. Then requiring 
that H(jco+a) does not intersect the disk F2(k'2, -pc)  yields the condition (fig. 3) 

k'2 < - 3 ( a + b ) .  (11) 

Comparing (10) and (11) one sees that the results are improved by letting r r O, if 

b 3 
3(a+b) < aT. 
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0 / \~ta+b)-I 

Fig. 3. Application of theorem 1. 

4. Time Invariant Nonlinear Systems 

We shall now specialise to the case, where the gain k(t, y) is not explicitly dependent on time. 
The system equation (2) then takes the form: 

p(D)z+f(q(D)z)  = 0,  (12) 

where f (y)= k (y).y is a time invariant, nonlinear function, with f (0)= 0. Of course, theorem 1. 
applies to the equation (12). However we shall show that, for time invariant systems, the 
permissible range of the parameter r may be extended to negative values. Let 

= A x - b f ( c ' x )  (13) 

be the vector representation of (12), and as before, let V(x)=x 'Vx  be a quadratic form in the 
state variables, which is neither positive definite, nor positive semidefinite. As in par. 2 one 
finds : 

12 (x) - 2r V (x) = x' (V (A - rI) + (A - rI)' V) x - 2 (Vb)' x f  (e' x) 

which equals the derivative of V(x) along the solutions of 

= A~x -b f ( c ' x )  A~ = A - r I  (14) 

which is equivalent with: 

p(D+r)z+f (q(D+r)z )  = 0.  (15) 

If we require that this derivative is smaller than or equal to zero, we have 

l? (x) - 2r V (x) < O . (16) 

For negative values of r, the only conclusion we can draw from (16) is that l?(x)< 0 if V(x)= O, 
which implies that, if Uv (x)= (x, V(x)< 0), then no trajectory, starting inside Uv(X) at t =  0, 
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can leave Uv(x ) as time increases. This result however is insufficient to prove instability: 
Uv(x) contains the origin x=0 ,  and it is still possible that all trajectories approach 0 as 
t ~  + ~ .  In order to prove instability, we must cut the origin out of Uv(x). In other words, we 
wish to do the following: 

1. define a closed set Uc (x) which does not contain the origin. 
2. make sure that UT(X)= Uv(x)~ Uc(x) is nonempty, and that a trajectory, starting inside 

Ur(x) remains in it as t ~  + ~ .  
We shall proceed as follows: We already know that, at the boundary of Uv (x) the vector 

field points to the inside of Uv(x). Now let 3Uc(x) be the boundary of Uc(x), and let Or Uc(x) 
be the subset of #Uc(x ) which is part of the boundary of Ur(x). In other words: 

= 0vc(x)0(x;  V(x)=< o). 

Now let us assume that, at all the points XSOT Uc(x), the vector field points to the inside of 
Uc(x). It is not hard to see that, under these conditions, the vector field points to the inside of 
UT(X), at all points x on the boundary of UT(X), which is the desired result. In Appendix 2, 
the conditions of existence of a set Uc (x), with the desired properties are derived. It is shown that, 
upon the parameter r, a limitation is imposed of the form : r > ro, where in general r0 is a negative 
scalar. More specifically, the following result is obtained: 

Circle Theorem 2. 

Assume that 
1. the open loop system, with transfer function H(s), is stable. 
2. the feedback function f(y) lies completely within a sector defined by two straight lines 

with slopes ~ > 0 and/3 > 0 : 

0<  ey2< yf(y) </3y2. 

3. the complete frequency response H(jco) (-Go < co< + oo) encircles the critical point 
-1 /K m => 1 times in the clockwise direction, with K=df(y)/dYlr=O. 

4. a scalar r < 0 can be found, such that the plot H(]co + r) does not intersect the open disk 
F (~,/3), and encircles it m - 2  times in the clockwise direction*; 2 is the number of poles 
of El(s), whose real part lies in the interval [0, r). 

Then the equilibrium state at the origin is not stable in the sense that there exists a set of 
initial states Xo, such that Ix(t, Xo, 0) ___t/>0 for all t >0. 

Xo can he chosen arbitrarily close to the origin. Hence the theorem implies that the origin 
is not asymptotically stable in the sense of Liapunov. 

5. Example 

Let us again consider the system of fig. 2, where we assume now that we have a time invariant 
nonlinear function in the feedback branch. Let us find conditions under which the closed loop 
system is unstable. First consider the case yf(y) > 0 for all y. If we have K = df(y)/dy]y=O > kl 
then H(jco) encircles the critical point - 1/K twice in clockwise direction. Now it is easy to see 
that the best choice of r is r = - b. The plot of H (jco - b) is shown in fig. 4. We have 2 = 0, while 
H(jco-b) encircles the open disk F(~,/3) twice in clockwise direction, without intersecting it, 
for all pairs (~,/3) for which + ~ >/3 _> ~ _> 0. Hence the closed loop system is unstable if 

if(y) >0 for all y df(y)/dy[y=O >kl.  

Next assume that yf(y)<= 0 for all y. If K < min (ko, k2), then HOe) ) encircles the point - 1 / K  
three times in the clockwise direction. Now let r be a negative number, with a large absolute 
value. The plot of H(jco+r) is shown in fig. 4, for increasing values of [rl >b. We have 2=3,  

* with the restriction that, if K = c~ or K = fl, H(jco + r) mus t  no t  be allowed to pass th rough  the point  - 1/K. 
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(~ .~ 0 + 
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/ 
co .~.0 - 

H t j m + r ~ rlxx~'r2~ 

3 2 1 

Fig. 4. Application of theorem 2. 

while, for Irl sufficiently large, the open disk F(e,/~) is neither encircled, nor intersected by 
H(j~o + r), for any pair (e,/3) for which 0 >/~ > e > - oe. So the closed loop system is also unstable 
if yf(y)<0 for all y df(y)/dyly=o< min(ko, k2). 
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6. An Instability Counterpart of Popov's Throrem 

The theorems derived in the preceding paragraphs, are instability counterpar[s of the circle 
criteria in stability theory. By a similar procedure, a corresponding instability result can be 
found for many other stability theorems. An important example consists in finding an instability 
counterpart of Popov's theorem. As is well known, Popov's theorem applies to systems having 
a time invariant nonlinear feedbackf(y), and relies on the use of a Liapunov function of the 
type 

(17) 

where x' Vx is a quadratic form and e a scalar constant. Hence we shall use a function V(x) of 
the same type. Deriving V(x) along the solutions of (13), and subtracting 2rV(x) yields: 

17 (x) - 2r V (x) = x' (V (A - rI) + (A - rI)' V) x - 2 (Vb)' x f  (c' x) 

f C'X +ef ( c ' x ) c ' (Ax -b f ( c ' x ) ) -2 re  f(O)dO. 
o 

Now let us assume e.g. that the following relation holds: 

0<  {Yf(O)dO<�89 for all y .  (18) 
=-- .)0 

Then we have: 

1:1 (x) - 2r V (x) < x' (V (A - rI) + (A - rI)' V) x - 2 (Vb)' x f  (e' x) 
+ e f ( c ' x ) c ' ( ( A - r I ) x - b f ( e '  x)) if re< O. (19) 

Furthermore, the right hand side of (19) equals the derivative of V(x) along the solutions of 
(14). First consider the case r > 0 ;  ct< 0. Then we shall require that there exists a function 
V(x) of the form (17), whose derivative along the solutions of (14) is smaller than or equal to 
zero, and such that the set Uv(x) = (x ; V(x) < - P) is nonempty for some P >0. We then have: 
(/(x) < - 2 r P  < 0 at the boundary of Uv(x), which is the desired condition. If r < 0; e > 0, we 
proceed in a similar way as in par. 4, defining Uv (x) = (x; V(x) < 0). We now have the additional 
problem of cutting the origin out of Uv (x) by means of a suitable set Uc (x). A detailed examin- 
ation of the different conditions is carried out in Appendix 3, leading to the following result : 

Theorem 3. 

As.sume that 
1. the open loop system, with transfer function H(s) is stable. 
2. the feedback function f (y)  lies completely within a sector, defined by two straight lines 

with slopes ko = df (y)/dy]y = o and kl. 

3" either t~f(O)dO > l I~ =~yf(y) ,  or f (O)dO<lyf(y)  foral l  y* 

4. two scalars r and e can be found, such that re__< 0, and such that 

Re(l+ejco) l+k lH( jco+r )  > 0 for all real co (20) 
1 + k0H(]o~ + r) = 

and such that 
a. if r > 0  

H(jco+ r) ( - o e  < 09_< + oe) encircles the critical point -1 /ko  at least once in the clock- 
wise direction. 

* This condition means that the surface between the curvef(y)  and the y-axis, is either not smaller than, or not  larger 
than the triangle OYZ, for every point Z o n f ( y )  (fig. 5). 
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b. i f r < 0  
H(jo) ( - o o  _< co_< + oo) encircles - 1 / k  o m __> 1 times in the clockwise direction, and 

H (]co + r) ( - oo ___ m_< + oo) m - 2 times. Again 2 is the number of poles of H (s) with real part 
in the interval (r, 0]. 

Then the equilibrium state at the origin is not asymptotically stable in the sense of Liapunov, 
if r =< 0 and not stable in the sense of Liapunov if r > 0. 

z 

o y y 

Fig. 5. A function f(y) satisfying the conditions of theorem 3. 

The geometrical interpretation of the condition (20) is well known : Let 

H(s) 
H,(s) - 1 +koH(s ) 

be the transfer function of the system, when linearized at the origin, 'and suppose e.g. that 
k, > ko. Then (20) can be written as: 

1 
k l _ k ~  ~ + Re( l  +ajo)Hz(jco+r)>O, 

which means that it must be possible, in the complex plane, to draw a straight line with positive 
slope (if r__< 0), or negative slope (ifr >__0)through the point - 1/(kl - ko), such that the modified 
polar plot co Im H~ (jo + r) versus Re H~ (jo) + r) lies completely to the right of it. 

7. Example 

Let (H(s);f(y)) be a system of the considered type, with 

1 +s+as  2 
H ( s )  - s3 

and f (y) = ko y + ky 3 a, ko, k > O . 
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Let us look for the instability conditions. One finds easily that  the complete frequency response 
H(jo9) ( - o o  <_o9 < + oo) encircles - 1 / k o  twice in the clockwise direction if k o < 1/a. 

Then 

= ql (s) _ 1 + s + as 2 

/-/l(S) pl(s) ~3+Ao(a+~+a~2 ) 

a)  

- !  

\\ 

q 

/ 

( 
/ 

b )  ~ t'=O 

a 4a2 4a 2 

C)  

~a ~_1 
4a 2 / 2a 

a 4a2 
Fig. 6. Example 3: Root locus of Hi(s) and shape of Hi(joe+r). Application of theorem 3. 

Journal of Engineerin 9 Math., Vol. 4 (1970) 243-259 



Time varying and nonlinear feedback systems 253 

has two poles in the right half plane, and one real negative pole - a 1 in the left half plane. We 
shall choose r < 0. Then the conditions of theorem 3, which require that H l (s) has no poles in 
the interval Jr, 0], limit the choice of r to the interval 0 > r  > - a l .  

In fig. 6 the root locus of H~(s) and the shape of H l (]Go + r) are drawn for different values of 
r < 0. The condition to be satisfied is that 

Re H~(/co+r)-~co Im H~(/co+r) >0 for all real co and for some a > 0 .  (21) 

First consider the case a > 1 (fig. 6b). Clearly (21) cannot be satisfied unless 

ReH~(/co+r)>0 if ImH~(/co+r)>0 (0_co<  +oe) 

Hence we must have r < - 1/2a. This condition can be satisfied with 0 > r > - a ~  if p~ ( -  1/2a) 
> 0, or" 

1 
k o > 2a 2 ( 4 a -  1)" 

Now it is easy to verify that under the latter condition (21) can be satisfied with r =  -�89 After 
some calculations one finds 

ReHl  c o -2aa  -~co ImHz  co -2aa  - ' 

if ~ k o 1-4aal  - ( aco2 )2+(  1 1 4 a  aco2)[c~co2(4@- c o 2 ) - ( 8 1 3 3 ~ c o 2 ] l  - - > 0 2 a  ] J  ' 

which is true for 

. . . .  > 0 .  

L \4a 2 ~2= O-+.- 1)/a 

Next let us turn to the case a <  1 (fig. 6c). Now we must require that r can be chosen such that 
ImH~ (/co + r) < 0 for all co > 0. A straightforward investigation shows that under this condition 
(21) can be satisfied by choosing e large enough. Furthermore we find Im Hz (/co + r)< 0 for all 
co>0, if 

( 1 - 2 r - 2 a r 2 ) 2 < 4 a r 2 ( 3 + 2 r + a r  2) or -2 r (2a  ~ - 1 ) > 1 .  

This requires a >�88 and p~( -1 / (4a4-2) )>0 ,  which yields: 

1 
k o > (4a 4 -  2) [(4a ~ - 2) 2 - (4a -~ - 2) + a]" 

We conclude that the system is unstable if k o < 1/a and if either a > 1 

1 
k~ > 2a 2 ( 4 a -  1) 

br �88 a _-<1 

1 
k o > • 1 2 ~ " (4a : -  2) [(4a : -  2) - (4a ~ - 2)+ a] 

8. Conclusion 

Instability criteria for time varying and nonlinear feedback systems have been determined, 
stated in terms of the plot H(]co +r), where r is a parameter, to be chosen in some interval 
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dependent on the pole--zero configuration of H(s). For a suitable choice of r substantially 
better results may be obtained than those from existing criteria. A disadvantage is that the 
analytical expression of H (s) must be available. 

9. Appendix 

1. Proof  o f  theorem 1. 
First consider the case 0 < k (t, y) < ft. Let x = Mxs be the linear transformation, that transforms 
the state vector x of equation (8) into the standard controllable state vector xs = Iz Dz ... D"- 1 zl' 
of the equivalent equation (9), and assume that, by this transformation V(x) is transformed 
into V~(x~). Let 

v (x3 t = [p~(D)z (pr (D)z+f lqr (D)z ) - rZ(D)z]d t ,  (22) 
.J td0) 

where pr (S) = p (S + r); q~ (S) = q (S + r) and r (s) is the spectral factor in the right half plane of the 
even part of (pr(s)+flq~(s))pr(-s) .  

It has been established [5] that r(s) and V~(x~) are defined, and that V~(xs) is a quadratic form 
in the elements of Xs, if 

R e [ l + f i  q~(jco) J=  Re [l  + fiH (]co + r)] _> 0 for all realco (23) 
Pr(JCO) - -  " 

Furthermore, 

V~(x~) is not positive definite or positive semidefinite if l+ f lH( j co+r)  is not 
positive real, which is satisfied if p(s + r) has at least one zero in the right half 
plane. (24)* 

Deriving V~(xs) along the solutions of (9) one finds: 

dV~(xs) _ k(t, y ) ( f i - k ( t ,  y ) )q2(D)z-r2(D)z<_ 0 
dt - " 

Now assume ~ < k (t, y) < ft. Then we replace the system (U (s); k (t, y)) by the equivalent system 
(Ho(s); k(t, y) - ~) where 

H(s) 
Ho(s)-l+.H(s) and 

If we apply the conditions (23) and (24) to this system, we find: 

1 + a H  (jco + > 0 for all real co (25) 

and 

Ho (s + r) has at least one pole in the right half plane (26) 

Under the assumptions of the theorem these analytical conditions translate into the indicated 
geometrical criteria. 

2. Proof  o f  theorem 2. 

Again let us first consider the case 0=< i f ( y ) <  fly2. As before, V~(xs) is defined by (22), which 
requires that (23) and (24) are satisfied. Now let us rewrite the equation (13) in the form: 

5: = A , x - b g ( e '  x) , (27) 

* By "right half plane" we mean  the open set Re s >0 .  
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where A~ = A -  Kbc' 
g(y) = f ( y ) - - K y  
K = df(y)/dyly=o. 

In view of (5), it is clear that  Az, b and c must  be chosen such that  

H(s) 
c ' ( s I -A l ) -  l b = H,(s) - I + KH(s) " 

Hence  if Hi (s) has m > 1 poles in the right half  plane, A z may  be defined as follows : 

I A 0 
Al=  0 A 2 

with 

A 1 = 

Pl c~ 

!--~~ Pi 

P2 (o2 

- -  ( '02 P 2  

/Ou (J)u 

- -  C~ Pu 

Pu+ 1 

RUq-V 

where Pi-+Jco, (i = 1 . . . . .  u) and Pi (i = u + 1, ..., u + v); 2u + v = m are the poles of H~(s) in the 
right half  plane, and A2 is defined similarly as A1, for the poles whose real par t  is not  positive* 
Next  the set Uc(X)is defined as Uc(x)=(x; C(x)>0),  with 

c ( x )  = . . .  

We shall suppose that  

V(x)xl=x2= . . . . . .  =o is positive definite in x,,+ 1, . . . ,  x~ (28) 

and, using this assumption,  we shall prove the following statements:  
1. The  set dr  Uc (x) = (x ; C (x) = O, V(x) < 0) is confined to an arbitrari ly small ne ighbourhood  

of the origin, if le[ is sufficiently small. 
2. If Xe~TUc(X), then C(x) > 0  along the solutions of (27). 

After consecutively splitting off x,, x ,_  1, ---, x,, + 1, one can easily verify that,  under  the assump- 
t ion (28), V(x) can be writ ten as: 

t l - -m 

= Q( I, . . . ,  Z 
i = l  

where z 1 ( i=  1, ..., n - m )  are linear combina t ions  of xl ,  ..., x ,  and zi~ ~ . . . . .  ~ = 0  are linearly 
independent  combinat ions  of x~+ 1 . . . . .  x,.  

C ( x ) = 0  implies Ix~[< e; i =  1 . . . . .  m. If in addi t ion V(x)< O, then 

* It is assumed that Ht(s) has no multiple poles. 
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n--m 
Z Z2~ --Q(XI'  " '"  Xn)~ /~2(~) 
i=1 

where q2(e)~0 as ~ 0 .  
Hence fz~l < q (e);i = 1 . . . . .  n - m .  But this implies ]x~] ___< ~ (e) with ~ (~)-~0 as e ~ O ; i  = 1 . . . . .  n. 
Now let us find C(x). We have: 

bixi9(c x) C(x) = 2 p l ( x 2 + x ~ ) + . .  . +2p,(x~,_l+x22,)+2p,+lX2u+l+2 . . . .  + 2p,+vxm + 2 2  , 
i=1 

(29) 
IfX~OT Uc(x) and e~0,  then Ixl-~0. Hence the last term in the right hand side of (29) is infinitely 
small of the third order (since g(y) /y~O as y~0) ,  while the other terms form a positive sum 
that is infinitely small of the second order. It follows that we have: C(x )>0  for X~OT Uc(X) 
and ~2 sufficiently small. 

So it remains to show that V(x)x~ . . . . . . .  =o is positive definite in xm+l, ..., x,. Deriving 
V(x) =x '  Vx along the solutions of 

Yc = Azrx -bg (c '  x ) Air = A l - r I  

which is equivalent with (14), yields" 

dV(x) 
dt - x ' (VA~+ A' l~V)x-2(Vb) '  xg(c' x)" (30) 

On the other hand, the derivative of V~(x~) along the solutions of (15) yields: 

dK(x ) 
dt - p~ (D) z (p~ (D) z + flq~ (D) z) - r 2 (D) z (31) 

with p , (P)z= - f (q r (D)z )  
In (31) we have: 

r (s) r ( -  s) = p, (s)p~ ( -  s) + Evfiq~ (s) p~ ( -  s). 

Since degree q~(s)< degree p~(s), this implies that r(s) can be written as: 

r (s) = p~ (s) + r 1 (s), (32) 

where degree rl (s)< n - 1 .  Substitution in (31) yields' 

dYe(x3 
dt - r2(D)z -p~(D)z( f iqr (D)z -2r l  (D)z) 

= - r 2 ( D ) z -  (flq~ (D) z - 2ra (D) z) f (q,. (D) z) 

= - (r 1 ( D ) z -  Kq~(D)z) 2 - K ( f i -  K) q2 (D) z -  9(q~(D) z)(flq~(D)z- 2r 1 (D) z) (33) 

since f ( y ) =  Ky  + g (y). Comparing (30) and (33) yields the identity: 

x' (VAl~ + A't~ V)x = -- [(r 1 ( D ) z -  Kqr (D)z) 2 + K ( f l -  K) q2(D)z]~ = u -  ~ 

= - x ' ( v v ' + w w ' ) x  since f l > K .  (34) 

If in (34) we let xl = ,  .... =Xm=0, we get" 
.,t 

X (1722(_,42 -- rI) + (A 2 - rI)' V22)x* -- -- x*'(v* v*'+ w* w*t)x* , (35) 

where the asterisk denotes a vector of dimension n - m ,  and where V22 is an (n-m)  square 
symmetric matrix, defined by 

V• 1/12 
V =  V;2 V22 " 

We must show that V22 is positive definite. But the equation 
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V22 (A2 - rI)+ (A2 - rI)' V22 = - (v* v*'+ w* w*') 

permits a unique positive definite solution V22 = V~2 if A 2 - rI has all its characteristic values 
in the left half plane, and if either the system 

$1" 2 = ( A l - - r I ) x  y = v ' x ,  or 
S~" 2* = (A2- r I ) x*  y = w*'x* 

is completely observable [4] [6]. This condition is satisfied afortiori,  if either 

S 1" 2 = (A 1 - r I ) x  y = v ' x ,  or 

$2" 2 = (Al--rI)x y =  w'x 

is completely observable. But the systems S~ and $2 are equivalent with" 

$1" pr(D)z+Kq~(D)z = 0 y = r l (D)z -Kqr (D)z  
$2: p~(D)z+Kq~(D)z = 0 y = (K(~6-K))~q~(D)z 

S 1 is completely observable if p~ (s) + Kq, (s) and r 1 (s) - Kqr (s), or, because of (32), if p~ (s)+ Kq, (s) 
and r(s) have no common factors. Since 

2r(s)r ( -s )  = (pr(s)+~q~(s))p,(--S)+(pr(--S)+fiq~(--s))p~(s) 

this condition is clearly satisfied, if K = fi (Remember that p (s) and q (s) have no common 
factors). I lK  r fl, then $2 is completely observable since q~ (s) and pr (s) + Kq~ (s) have no common 
factors. 

So the only remaining condition is that A 2 - r I  has all its characteristic values in the left 
half plane. This means that H~(s) must have no poles wh6se real parts lie in the interval [ -  r, 0]. 

If ey2 __< yf(y)< fly2, the conditions (23) and (24) are transformed again into the conditions 
(25) and (26). The only additional condition is that H 1 (s) and Hz (s + r) both have m > 1 poles in 
the right half plane, while all other poles of H~ (s + r) are in the left half plane. This completes 
the proof. 

3. Proof of  theorem 3. 

We first handle the case wheref  (y) satisfies the conditions of theorem 3, with ko = df  (y)/dyly = o = 0, 
and 0 <  yf(y)< k~y 2. Assume r >0,  c~< 0. We define: 

[(kl(l  +eD)qr(D)+pr(D))zpr(D)z-r2(D)z]dt  +e  ~f(O)dO, (36) 
�9 . ] t ~ ( O t  

where r(s) is the spectral factor in the right half plane of the even part of (kx (1 +es)qr(s)+ 
p~ (s)) p~ ( -  s). This requires that 

Re(1 +ejco)(1 +kxH(jco+r))  > 0  for all real co (37) 

while 

the condition that Uv(x)= (x; V(x)< - P ) i s  nonempty, requires that H(s+ r) 
has at least one pole in the right half plane. (38) 

The derivative of V~(xs)along the solutions of (15)is: 

dV~(xs) - [kl (1 + ~D)qr(D)z-f(q~(D)z)] f (qr (D)z ) -  r 2 (D)z+ ef(q~(D)z)Dqr(D)z 
dt 

= - (k 1 qr(D) z- f (q , (D)z)) f (q , (D)z)  - r 2 (D)z < 0. 

Next we proceed with the case r <  0; c~ >0. Again V~(xs) is defined by (36), leading to the 
condition (37). Furthermore note that, even if e > 0, the set Uv (x)= (x; V(x)< 0) is nonempty 
if (38) is satisfied. 
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Indeed, under this condition, x can be chosen such that x ' V x <  O. Then if we let Ixl~0, 
Ix' Vi i  is infinitely small of the second order, while 

f ~(D)z C~ f(O)dO is infinitely small of the third order, since df(y)/dyly= o = O. 

Hence if [xl is small enough, the condition V(x)< 0 can be satisfied. Now Uc(x) is defined, 
exactly as in Appendix 2.* The set Or Uc(x) is still confined to an arbitrarily small neighbour- 
hood of the origin, since now Uv(x) is only a subset of the set (x; x' Vx<  0), and for XEOT Uc(X) 
we still have C(x) > 0 for the same reason as before. So there only remains the condition that 
x'Vxxl  . . . . .  x,,=o is positive definite in x,,+l ... x,. Reasoning along the same lines as in 
Appendix 2, one finds, instead of (30)" 

d 
- -  x' Vx = x' (VAr + A' r V ) x -  Z(Vb)' x f  (c' x) (38) 
dt 

and instead of (33) 

d 
dt x'~ V~ x s = (k 1 (1 + aD) q, (D) z + pr (D) z) Pr (D) z - r 2 (D) z ,  (39) 

with p~(D)z=- f (q , (D) z ) .  Using the relation" 

2r( s) r( - s) = 2 pr( s) pr( - s) + pr( s) . k l ( 1 -  ~s) qr( - s) + pr( - s) . k l ( l + c~s) q,(s) (40) 

one finds easily that, ifpo, qo and 7P0 are the coefficients of the term in Sn ofpr (S), k~ (1 + as) q,(s) 
and r(s), then 

72Po = Po + qo �9 (41) 

Now define the polynomial rl (s), of degree < n - 1, by the relation 

r(s) = ~p~(s)+ r~ (s) . (42) 

Substitution in (39) yields: 

d 
dt X's V~xs = - r 2 ( D ) z  + pr(D)z[kl  (l +aD)q,.(D)z + p , . (D)z-  yZp, . (D)z-  27rl (D)z] 

= - r~ (D) z - f ( q , . ( D ) z ) . v ( D ) z ,  (43) 

where degree v(s)< n -  1 because of (41). 
Comparing (38) and (43) now yields the identity 

x ' (VA,  + A',. V) x = - [r 2 (D) Z]x, = M-1 

from which the argument proceeds as in Appendix 2. Finally one finds the conditions that : 
1. H(s) and H(s+r)  both have m> 1 poles in the right half plane, while all other poles of 

H (s + r) have negative real parts. (43), 
2. The system pr(D)z = 0; y = q,(D)z is completely observable, which, in view of (40) and 

(42) is satisfied, since pr(s) and (1 + as)qr(s) have no common factors**. 
If we now generalize to the case 0<  koyZ<_ y f (y )< k~yZ; ko=df(y)/dyly=o, then the system 
(H(s); f (y))  may be replaced by the equivalent system (Hz(s); f ( y ) - k o y ) ,  with 

H(s) 
Ht(s ) - l + k o H ( s )  and 0<  y ( f ( y ) - k o y ) <  ( k a - k o ) y  z . 

If 0 < kl y2 < y f  (y) < koy2 ; ko = df  (y)/dy [y = o, then (H(s); f (y)) is replaced by ( -  Hz(s); - f  (y) + 
koy) where 0 < y ( - f ( y ) +  ko y)< (ko- kl)y 2. If we apply the conditions (37), (38) and (43) to 
these equivalent systems, the instability criteria are obtained as stated in theorem 3. 
�9 Note however that here we have: K = 0, hence g (Y)=f(Y); A z = A; H l(s) = H (s). 
�9 -* Assuming the parameters ~ and r are chosen such that (1 +c~s) is no factor of p,.(s). 
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